Q. Assume
$$\frac{\alpha_0}{n+1} + \cdots + \alpha_n = 0$$
, try to prove that:
 $\alpha_0 \chi^n + \cdots + \alpha_n = 0$ has at least one root in (0,1)

Pf: consider $f(x) = \frac{a_0}{n+1} x^{n+1} + \dots + a_n x$ the idea comes from we need the form like $\frac{a_0}{n+1}$ to apply our condition. so f(0) = 0, and $f(1) = \frac{a_0}{n+1} + \dots + a_n = 0$ from condition. so Rolle that satisfied. there is a $3 \in (0, 1)$ sit f'(3) = 0which is $f'(3) = a_0 3^n + a_1 3^{n+1} + \dots + a_n = 0$, so 3 is a root. but we don't know what it is.

$$\begin{array}{l} (\lambda 2. Assume f(x) \text{ is continuous in } [0,1], \text{ differentiable in } (0,1), \\ And & |f'(x_1)| < 1, f(0) = f(1), tty to show: \forall x_1, x_2 \in (0,1), |f(x_1) - f(x_1)| < 1. \\ Pf: (D. If & |x_1 - x_2| < \frac{1}{2}, \text{ consider } |agrange thm in & [x_1, x_2] & (just assume & x_1 < x_1) \\ & |f(x_1) - f(x_1)| = |f'(z_1) & (x_1 - x_2)| = |f'(z_1)| \cdot |x_1 - x_2| < \frac{1}{2}. \\ \hline (D. If & |x_1 - x_2| > \frac{1}{2}, \text{ consider } 3 \text{ intervals } [0, x_1], [x_1, x_2], [x_2, 1]: \\ & |f(x_1) - f(x_2)| = |f(x_1) - f(0) + f(1) - f(x_2)| & (f(0) = f(0)) \\ & \leq |f(x_1) - f(x_2)| = |f(z_1) - f(x_2)| \\ & = |f'(z_1) (x_1 - o_2)| + |f'(z_2) ((-x_2)| \\ & < x_1 + |-x_2| \\ \hline For & |x_1 - x_2| = x_2 - x_1 > \frac{1}{2} \implies |+x_1 - x_2 = |-(x_2 - x_1)| < \frac{1}{2} & (assume & x_1 < x_2) \end{array}$$

$$50 |f(X_1) - f(X_2)| < \frac{1}{2} \quad \text{in this case.too} \, .$$

Q3. Assume f(x) is continuous in [a, b], differentiable in (a, b),
And: f(a) f(b) >0, f(a) f(
$$\frac{a+b}{2}$$
) < 0. Try to show:
Tor any $k \in R$, there exists $3 \in (a, b)$ st $f(3) = kf(3)$
Pf: From f(a) f(b) >0 we know f(a), f(b) should have the same same sign, positive or negative.
so from f(a) f($\frac{a+b}{2}$) <0 means f(a), $f(\frac{a+b}{2})$ have different sign.
The graph may like this:
 $3 \int \int S_0$ from the interme diate value thm of continuous function.
 $\frac{a}{1} \int \frac{1}{x_1} \int \frac{x_2}{b} x$ one $x_1 \in (a, \frac{a+b}{2})$ and one $x_2 \in (\frac{a+b}{2}, b)$
then consider $F(x) = e^{-kx} f(x)$ in $[x_1, x_1]$
 $F(x_1) = e^{-kx_1} f(x_1) = 0$ ($f(x_1) = 0$) $F(x_2) = e^{-kx_1} f(x_1) = 0$ ($f(x_1) = 0$)
Apply Rolle thm, there exists $3 \in (x_1, x_1) \subset (a, b)$ st $F'(3) = e^{-k3} cf(3) - kf(3) = 0$
 $F_0r e^{-k3} \pm 0$. $\Rightarrow f'(3) - kf(3) = 0 \Rightarrow f'(3) = kf(3)$

- Remark: such method is called the auxiliary function, we try to construct a new function F(x) that its derivative F(x) would satisfied the form of conclusion, then apply MVT in F(x).
- Q4. Assume fix) is twice differentiable in (-100, +00), and fix) is bounded. Try to show : there exists 3 & (-100, +00) that f"(3)=0. Pf: we use the prove by contradiction. Assume that there doesn't exist any 3 s.t. f'(3) = 0 which means f''(x) > 0 or f''(x) < 0 for all $x \in (-\infty, +\infty)$ (this is guaranteed by darboux thm which said the derivative would have intermediate property) Now we consider f''(x) > 0 $x \in (-\infty, +\infty)$ $f''(x) > 0 \Rightarrow f'(x)$ is strictly increasing take a point to which satisfied f(tx) > 0, consider X > Xo. then: $f(x) - f(x_{\nu}) = f'(z)(x - x_{\nu})$ (Lagrange thm) $3 \in (x_{\nu}, \chi)$ > f'(xo) (x-xo) (3>xo) $\implies f(x) > f(x_0) + f'(x_0) (x - x_0)$ (1) For $f'(x_0) > 0$, so if we let $x \rightarrow +\infty$, the right-side of (1) goes to $+\infty$. so $f(x_1) \rightarrow +\infty$ which is a contradiction from fix, is bounded. If $f'(x_0) < 0$, just consider $f(x) = f'(x_0) + f'(x_0)$ where $x < x_0$, so $3 < x_0$ $< f(x_0) + f'(x_0)(x-x_0)$ let $x \rightarrow -\infty$, then $f(x) \rightarrow -\infty$. similar to get contradiction when f''(x) < 0

so the assumption is wrong, there must exist some 3 s.t. f''(3) = 0

Kemark: the proof 1 give in the tutorial of Monday is wrong, the mistake is:

$$f(x) - f(x_0) = f'(3)(x - x_0) \implies |f'(3)| = \frac{|f(x) - f(x_0)|}{|x - x_0|} \le \frac{2M}{|x - x_0|}$$
but this 3 actually should be $3=3(x)$ related to x , so when $x \Rightarrow +\infty$,
this 3 also changes, we can't sure that there are some 3 st $f(3) = 0$.
the counter-example is $y = f(x) = \arctan(x)$

$$f'(x) = \frac{1}{1+x^2} \neq 0$$
, and $f''(x) = \frac{-2X}{(1+x^2)^2}$ would equal to 0 when $x = 0$.

Q5. Assume f(x) has n+1 different roots in [a,b], and f(x) has derivatives till to order n. try to show there is at least one root $z \in (a,b)$ s.t $f^{(n)}(z) = 0$.

Pf:
$$\frac{x_0}{a}$$
 $\frac{x_1}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_1}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_1}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_1}{x_2}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_1}$

Supplementary Exercises 3. From Math1010C homepage. Included here for Reference ONLY.

Math 1010C Term 1 2014 Supplementary exercises 3

The following exercises are not to be submitted, but they form an important part of the course, and you're advised to go through them carefully.

In supplementary exercise 2, we saw how one could find the absolute maximum / minimum of a continuous function on a closed and bounded interval. In the following, we will locate relative maximums / minimums of a function, and find the absolute maximum / minimum of a function on an unbounded interval (if it exists).

1. Find all critical points of the following functions on the indicated intervals. Determine whether these are relative maximums / minimums of the functions (they could be neither).

(a)
$$f(x) = x^{1/3}(x-4),$$
 $(-1,\infty)$
(b) $g(x) = x\sqrt{8-x^2},$ $(-2\sqrt{2}, 2\sqrt{2})$
(c) $h(x) = x \ln x,$ $(0,\infty)$

- 2. For each of the following function,
 - (i) Determine where the function is increasing, and where it is decreasing;
 - (ii) Find all relative maximums / minimums of the function on $(-\infty, \infty)$;
 - (iii) Determine whether any of these is an absolute extremum of the function on $(-\infty, \infty)$. (For this you will need to understand the behaviour of the function at $\pm \infty$.)
 - (iv) Determine where the function is convex, and where it is concave;
 - (v) Sketch the graph of the function.

(a)
$$f(x) = x^3 - 12x - 5$$

(b) $a(x) = x^2(1 - x^2)$

$$\begin{pmatrix} a \end{pmatrix} = \begin{pmatrix} a \end{pmatrix} = \begin{pmatrix} a \end{pmatrix} (a) \end{pmatrix} \begin{pmatrix} a \end{pmatrix} (a) \end{pmatrix} (a) \end{pmatrix} (a) \end{pmatrix} (a) (a))$$

(c)
$$h(x) = \frac{x}{x^2 + 1}$$

- 3. For each of the functions and intervals in Question 1, determine whether the given function have an absolute maximum / minimum on the indicated intervals. (You'll have to understand the behaviour of these functions as x approaches the end-points of the intervals.) If yes, find the maximum / minimum values of the functions on the indicated intervals.
- 4. Determine whether the following functions have an absolute maximum / minimum on the indicated intervals. If yes, locate ALL points where the absolute maximum / minimum are achieved.

(a)
$$f(x) = e^{2x} + e^{-x}$$
, $[0, \infty)$
(b) $g(x) = \frac{x^2 - 3}{x - 2}$, $(-\infty, 2)$
(c) $h(x) = \frac{2x^2 - x^4}{x^4 - 2x^2 + 2}$, $[-1, \infty)$

(Credit: Many of the above functions are taken from Thomas' calculus, chapter 4.)

Supplementary Exercises 3. From Math1010C homepage. Included here for Reference ONLY.

TA-71

 $f(x) = \chi^{1/3} (x-4)$, $\chi \in (-1, \infty)$. A) $f'(\chi) = \frac{1}{3} \cdot \chi^{\frac{1}{3}}(\chi - 4) + \chi^{\frac{1}{3}} = \chi^{\frac{1}{3}} \left(\frac{\chi - 4}{3\chi} + 1 \right) = \frac{4(\chi - 4)}{3\chi^{\frac{2}{3}}}$ <u>critical</u> $pt \iff f(n) = 0 \iff x = 1$; is the only critical pt; Observation: X: 1 0 1 4 f'a): - 0 + + fix) 5 0 -3 O local min +coo • when $\chi < 1$, $\chi \pm 0$, $f'(\chi) < 0$, $f'(\chi) = \chi \pm 1$ is local min. $\chi > 1$, $f(\chi) > 0$ $f'(\chi) > 0$, $\chi = 1$ is local min. For Ex3: Oh (-1,00): 5. f is decreasing on (-1, 1), & (f(0)=0 does not influence this (f(1)=5, f(1)=03) is cont. pt $f'(0)=\infty$. f is increasing on (1, (∞); $(f(1)=-3, f(\alpha)=0, f(\alpha)=+\infty)$ \Rightarrow = 1 is absolute min of f on (-1, w), with min value f(1) = -3; · f dues not have an absolute max. on (4, co) it is continues on $(-1, +\infty)$, 8 lim fit) = + ∞ ; $y = \chi^{'3}(\chi - 4)$ -1 0 1

 $E_{x1.}$ (b) $g(n) = \pi \sqrt{8 - \chi^2}$. RE (-252, 252) Sol'n $g'(x) = \sqrt{8 - x^2} + x \cdot \frac{-2x}{2\sqrt{8 - x^2}} = \frac{2(4 - x^2)}{\sqrt{8 - x^2}}$ Then g'on =0 (=> $\chi = \pm 2 \in (-2\sqrt{2}, 2\sqrt{2})$ (nitical points; Now observe that: X: -25 -2 0 2 252 $g(x) - \infty = 0 +$ О -20 g(x) 0 + 8 0 8 0 Then since near x=2, g'(n) < 0 for $x \in (-2, 5, -2)$; g'(n) > 0 for $x \in (-2, 2)$; near $\chi = 2$, $\begin{cases} g'(\chi) > 0, & \text{for } \chi \in (-2, 2), \\ g'(\chi) < 0, & \text{for } \chi \in (2, 26); \end{cases}$ $\Rightarrow \pi = 2 \hat{o}$ local max. * for Ex1.

For Ex3, First observe god) can be extended continously on [-252, 26] with g(-252) = g(252) = 0; with g(a) is can do what we do & then awarding gives 's behaviour

Conclusion: gon) can achieve absolute max. & absolute min. 4 on (-2.5, 2.5), at $\chi = -2$ (abs. min.), $\omega / f(-2) = -4$ ats. min value;

cfs. max value.

(c) $hex) = \chi \ln \chi$, $\chi \in (0; \infty)$; 8 h(X) does not have absolute max: $h'(x) = lnx + x \cdot \frac{1}{x} = lnx + 1;$ lim has = + co. Then $h'_{1}(x) = 0 \iff \chi = e^{-1} = \frac{1}{e} \approx 0.36788$. スートー 8 $h'(x) < 0 \iff x \in (0, \frac{1}{e})$ $h'(x) > \langle = \rangle \quad \chi \in \left(\frac{1}{e}, +\infty\right);$ $\Rightarrow \chi = \frac{1}{2} \quad \text{for eal min}, \quad \text{(K Ex. 1)}$ For Exis, obsource that $\begin{array}{c|c} 0 & (0, \frac{1}{e}) & \frac{1}{e} & (\frac{1}{e}, +\infty) \\ \hline R(a) & 0 & -\frac{1}{e} \\ \hline R(a) & -\infty & <0 & 0 \\ \end{array}$ $\Rightarrow \pi = \frac{1}{2}$ is absolute mine, with $f(\frac{1}{2}) = -\frac{1}{2}$;

$$E_{X2}: \{ (a) \quad f(n) = \pi^{2} - 12\pi - 5; \qquad \text{where decreasing, in creasing;} \\ (b) \quad g(n) = \pi^{2} (1 - \pi^{2}); \qquad \text{where constants, containe;} \\ (c) \quad h(n) = \frac{\chi}{\chi^{2} + 1}; \qquad \text{reletive extreme, 8 whether atsolute a not.} \end{cases}$$

B) L'Hopital Rule Thm 3.7 (Pto, text bute) If f. g setisfies (f(c) = g(c) = 0;. f.g are forth differentiable on (a,b); (except perhaps at c) • $g'(\mathbf{x}) \neq 0$, on (a,b), $\forall \mathbf{x} \neq c$; • $\lim_{x \to c} \frac{f(x)}{g(x)} = 3$, $8 = \lambda$ (finite number); Then $\lim_{x \to c} \frac{f(x)}{g(x)} \exists \& = \&$; Remark: More general forms: $\begin{cases} (1) \quad f(C) = g(C) = 0 \quad (1) \quad f(x) = \lim_{x \to C} g(x) = \pm c \circ ; \\ x \to c \quad x \to c \quad (1) \quad$ (1) $C \in (a,b)$ mention $c = \pm \infty$; POINT: (i) L'Hôpital rale are most useful tool when dealing with evaluating limits involving inderminate forms $ie. \frac{7}{2} forms: \frac{0}{10}; \frac{0}{100}; \frac{$ $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & &$ & flave to check it is of one of above form before using L'blopital rule. (otherwise, clearly lim pinx = lim + cosx 29 x70 cosx = lim + cosx (11) Sometimes L'HSpital rule dues not work, but it dues not mean that the limit does not exist. Eq. $\lim_{x \to \pm \infty} \frac{x + \sin x}{x + \cos x} = 1$, But L'He'pital rule can not work here; (i.e. it is sufficient, but)

(iii) You can use L'Hopital rule to verify the following
useful equivalence relations easily . og

$$\chi \Rightarrow 0$$
, $\chi \sim \sin \chi \sim \tan \chi \sim \arctan \chi \sim \arctan \sin \chi \sim \arctan \chi$
 $\sim \ln(H\chi) \sim \frac{\alpha^{\chi}-1}{\ln \alpha} \sim \frac{(H+\chi)^{H}-1}{\mu}$; (aso,
 $\chi = \frac{1}{2}\chi^{2} \sim (1-\cos\chi)$; etc;
Example: $\lim_{\chi \Rightarrow 0} \frac{\sin \chi}{\chi} : \sin \alpha = \frac{0}{0}$, $\chi \Rightarrow 0$ using $\frac{\sin \chi}{\chi} = 1$;
 $\lim_{\chi \Rightarrow 0} \frac{\ln(H\chi)}{e^{\chi}-1}$; $\sin \alpha = \frac{0}{0}$, $\beta \neq 0$, $e^{\chi}-140$, β
 $\lim_{\chi \Rightarrow 0} \frac{\ln(H\chi)}{e^{\chi}-1}$; $\sin \alpha = \frac{1}{2}$;
 $\lim_{\chi \Rightarrow 0} \frac{\ln(H\chi)}{e^{\chi}-1} = \lim_{\chi \Rightarrow 0} \frac{1}{\frac{1}{\pi^{\chi}}} = \lim_{\chi \to 0} \frac{1}{(H\chi)e^{\chi}} = 1$;
 $\lim_{\chi \Rightarrow 0} \frac{\ln(H\chi)}{e^{\chi}-1} = \lim_{\chi \to 0} \frac{1}{e^{\chi}} = 1$;
 $\lim_{\chi \to 0} \frac{\ln(H\chi)}{(e^{\chi}-1)} = \lim_{\chi \to 0} \frac{1}{e^{\chi}} = 1$;
 $\lim_{\chi \to 0} \frac{\ln(H\chi)}{e^{\chi}-1} = 1$;
 $\lim_{\chi \to 0} \left(\frac{\sin \chi}{1}\right)^{\frac{1}{1-(\pi)\chi}}$;
 $\lim_{\chi \to 0} \left(\frac{\sin \chi}{1}\right)^{\frac{1}{1-(\pi)\chi}}$;

	x->0	/	,		
(c)). lim X→+∞	×5× (=	lim x ×);	

Ex

$$\frac{SU(n)}{X \to 0} \left(\frac{1}{\ln(Hx)} - \frac{1}{x} \right) = \lim_{X \to 0} \frac{X - \ln(Hx)}{X \ln(Hx)} \quad \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

$$\frac{1}{2} \frac{1}{100} \frac{1}{100} \left(\frac{X - \ln(Hx)}{(X \ln(Hx))'} \right) = \lim_{X \to 0} \frac{1 - \frac{1}{100} \frac{1}{1$$

(c) $\lim_{\substack{\chi \to +\infty}} \left[b\chi \right]^{\frac{1}{\chi}}$, still try $\lim_{\substack{\chi \to +\infty}} \ln x \sqrt{\chi} = \lim_{\substack{\chi \to +\infty}} \frac{\ln \chi}{\chi} = \lim_{\substack{\chi \to +\infty}} \frac{\ln \chi}{\chi} = 0$

 $\implies \lim_{\chi \to +\infty} \sqrt[\infty]{\chi} = 1.$

Tutorial 7

Topics: Rolle's, Lagrange's and Cau Q1: Suppose f: R -> R is differentiab Show that JCER S.E f'(c) = 0 02: Suppose f: [a,b] -> R is continuous if f(k) exists $\forall x \in (a, b), \forall k = 1, 2, ..., n$ and f(ai)=0 ti=0,1,..., where ave arear and Show that $\exists c \in (a, b) \ s, t \quad f^{(m)}(c) = o$.

Recall :

Suppose fig : [a,b] -> R and fig are differentiable on Rolle's MUT: If fas = f(b) the Lagrange's MUT: There exist CE (a, b) Cauchy's MVT: There exist CE(a,b) equivalently \overline{f} $g'(c) \neq 0$, $g(b) - g(a) \neq 0$

then $\frac{f'(c)}{q'(c)}$

were
$$\exists ce(a,b) s.t. f(c) = 0$$

s.t.
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

s.t.
$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

$$\frac{f(b) - f(a)}{g(b) - g(a)}$$

Lagrange's

Solz Q1) Consider x=0, we have $f(0) = \lim_{x \to \pm \infty} f(x)$ or $f(0) \neq \lim_{x \to \pm \infty} f(x)$ Case D: f(v) = lim f(x) choose yo between f(0), tim f(x) i.e. min {f(0), lim f(x)} < y_o < max { f(o), lim f(x) } since f is continuous on IR Jac(-w,o) and be (v,w) s.t. $f(a) = f(b) = \lim_{X \to \pm \infty} f(x)$ By Rolle's thin JCG (a,b) sit. f'(c) = 0

(ase (2) if $f(o) = \lim_{x \to +\infty} f(x)$ Consider X=1 if f(1) = lim f(x) then repeat argument of Case D. if $f(1) = \lim_{x \to \pm \infty} f(x) = f(0)$ then by Rolle's thm 3 CE (0,1) sit. f'(c) = 0

Since
$$f(a_0) = f(a_1) = \dots = f(a_n) = 0$$

for $a_0 < a_1 < \dots < a_n$
By Rolle's MUT $\exists b_i \in (a_i, a_{i+1}), i = 0, 1, \dots, n-1$
s.t. $f'(b_0) = f'(b_1) = \dots = f'(b_{n-1}) = 0$
where $b_0 < b_1 < \dots < b_{n-1}$

Assume that for
$$k = 0, 1, ..., n-1$$
 s.t.
 $f^{(k)}(x_0) = ... = f^{(k)}(x_{n-k}) = 0$
By Rolle's thun $\exists y_i \in (x_i, x_{i+1})$ $i = 0, ..., n-k-1$
s.t. $f^{(k+1)}(y_i) = f^{(k)}(y_i) = 0$
inductively, we have $f^{(n)}(y_i) = 0$, $i = 0 \Rightarrow f^{(n)}(c) = 0$ for $c = y_0$.

Q2)

(23)By Legrange's MUT, $(bt x \in (a,b), \frac{f(b) - f(x)}{b - x} = f'(c) \exists c \in (x,b)$ $\Rightarrow \quad 0 = f'(c) = \frac{f(b) - f(x)}{b - x} \quad \Rightarrow \quad f(b) - f(x) = 0$ \Rightarrow f(x) = f(b) $\forall x \in (a, b)$ Hence f is constant on (a,b]. [need f(a) = f(b)] By Rolle's thm, $\exists c \in (a,b) \ s.t. \ o = f'(c) = \underbrace{f(b) - f(a)}_{b = c}$ =) f(b) = f(a) Hence f(x) = f(b) = f(a) on $x \in [a, b]$

(by sub
$$x = c+h$$
)
where $x \neq c$ and
 $min\{x,c\} < tx < max\{x,c\}$

jmin @math. Cuhk. edu Turtonial 7. 便笺标题 2014/10/20 Skotch graph of a function. * Second derivative ~ convex, concave. f(x) + f(y) f(x) + f(y) f(x) + f(y) f(x) + f(y)Convex : concave $f(\frac{x+y}{z}) < \frac{1}{2}f(x) + \frac{1}{2}f(y)$ $f\left(\frac{1}{2}\right) > \frac{1}{2}f(x) + \frac{1}{2}f(y)$ f'(x) < 0f'(x) > 0+00 graph of y= 22. Eq. Zenus. pusitive/nyportive asymptotics first derivative + 20 oncark (mancave (mybo Convers Cannot distinguish these by above information \mathbb{V} Need seemd derivative, y"= 2 >0 So the function is always convex

$\frac{Condition:}{You wont to apply MVT !!!}$ $\Rightarrow f(a) is contis on [a,b] and differentiable on (a,b)$ $\frac{Polles them}{f(a) = f(b)} = \frac{Lgranges MVI}{2 \in (a,b)} = \frac{G(a) \times WVI}{f(a) = f(b)}$ $= \frac{1}{2 \in (a,b)} = \frac{1}{2 \in (a,b)} = \frac{1}{2 (a,b)}$ $= \frac{1}{2 \in (a,b)} = \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)}$ $= \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)}$ $= \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)} = \frac{1}{2 (a,b)}$ $= \frac{1}{2 (a,b)} = \frac$	
* fai is contis on Ia.b] and differentiable on (a.b) Rolle's them < Legenages MVI < Carchy's MVT fue) = f(b) = $2 \in (a,b)$ g(x) to for relade) = $2 \in (a,b)$ set f(2) = f(b) for = $2 \ge (a,b)$ set f(2) = 0 = $2 \ge (a,b)$ = $2 \ge (a,b)$ set f(2) = 0 = $2 \ge (a,b)$ = $2 \ge (a,b)$ set f(2) = 0 = $2 \ge (a,b)$ = $2 \ge (a,b)$ MVT is used to do proofs : The access of f: (a,b) $\rightarrow R$ is contis. f is different on (a,b) \left , and lim f(x) exists. Prove that f is differentiable on c. ond f(x) = lim f(x). Pf: To prove differentiablety, we do it using definiti f is clifferentiable at c of find find f(x) exists Now find f(x) = f(x). Now f(x) = f(x). (x) =	(م) ع ع)
$\frac{Relles \pm hm}{f(\omega) = f(\omega)} \qquad \qquad$	<u>fω)</u> g b)
$f(w) = f(b) \qquad \exists \ 2 \in (a,b) \qquad g'(w) \neq 0 \text{ for relative} \\ \exists \ 2 \in (a,b) \qquad \text{s.t. } f'(\ 2) = \frac{f(b) - f(w)}{b - a} \qquad \exists \ 2 \in (a,b) \\ \text{s.t. } f'(\ 2) = 0 \qquad \qquad \text{s.t. } \frac{f'(\ 2)}{g'(\ 2)} = \frac{f'(b) - f'(b)}{g'(\ 2)} = \frac{g'(b) - f'(b) - f'(b)}{g'(\ 2)} = \frac{g'(b) - g'(b)}{g'(\ 2)} = g'(b) - g'(b$	(w) (w)
$\frac{12}{12} \frac{f(a,b)}{s.t.} \frac{f'(b) - f(a)}{b.a} = \frac{12}{2} \frac{f(a,b)}{s.t.} \frac{12}{f'(b)} = \frac{f'(b) - f'(b)}{g'(b)} = \frac{f'(b) - f'(b)}{b} = \frac$	(w) -g #)
MUT is used to do proofs: The acceb, $f:(a,b) \rightarrow iR$ is cort's. f is different on $(a,b) \setminus ich$, and $\lim_{X \to c} f'(x)$ exists Prove that f is differentiable on c . and $f'(c) = \lim_{X \to c} f'(x)$. Pf: To prove differentiable at c of f is clifferentiable at c of $\lim_{X \to c} \frac{f(ch) - f(c)}{h} = \frac{f(ch) - f(c)}{ch - c}$ Now $\frac{f(ch) - f(c)}{h} = \frac{f(ch) - f(c)}{ch - c}$ Since f is costs on (a,b) and clifferentiable on (a,b) so f is costs on $(c, (ch))$ on (ch, c)	(w) -g w)
MUT is used to do proofs: The acceb, $f:(a,b) \rightarrow R$ is contis. f is different on $(a,b) \setminus ich$, and $\lim_{x \to c} f'(x)$ exists Prove that f is differentiable on c . and $f'(c) = \lim_{x \to c} f'(x)$. Pf: To prove differentiable $at c$ of f is differentiable $at c$ of $\lim_{x \to c} \frac{f(ch) - f(c)}{h} = \frac{f(ch) - f(c)}{c+h-c}$ Now $\frac{f(ch) - f(c)}{h} = \frac{f(ch) - f(c)}{c+h-c}$ Since f is costs on (a,b) and differentiable on (a,b) so f is costs on $(c,(ch))$ on (ch,c)	-{B} (b)
Fg. $a < c < b$, $f:(a,b) \rightarrow iR$ is contis. f is different on $(a,b) \setminus ich$, and $\lim_{x \to c} f(x) = cxists$. Prove that f is differentiable on c . and $f'(c) = \lim_{x \to c} f'(x)$. P f : To prove differentiability, we do it using definition of its clifferentiable at c if $\lim_{x \to c} \frac{f(c,b) - f(c)}{b} = \frac{f(c,b) - f(c)}{c+b - c}$. Nove $\frac{f(c,b) - f(c)}{b} = \frac{f(c,b) - f(c)}{c+b - c}$. Since f is cost's on (a,b) and $clifferentiable on (a,b)so f is cost's on Tc, (+b) on Tc+b, i]$	
Eq. a <c </c Eq. a <c </c Eq. a <c </c A <c </c Prove that f is differentiable on c. and f'(e) = lim f'(x) Prove that f is differentiable on c. and f'(e) = lim f'(x). Pf : To prove differentiability, we do it using definiting f is differentiable at c of filling firehon-filling firehon-filling exists Nory filling firehon-filling exists Nory filling firehon-filling contaction (a, b) and differentiable on (a, b) so f is costis on Ic, (+h) on Ic+h, c]	
on (a,b) \ick, and $\lim_{x \to c} f(x)$ exists. Prove that f is differentiable on c . and $f'(c) = \lim_{x \to c} f'(x)$. Pf : To prove differentiablely, we do it using definiting f is differentiable at c of f is differentiable at c of $\lim_{h \to c} \frac{f(c,h) - f(c)}{h} = \frac{f(c,h) - f(c)}{c+h-c}$. Now f is cost's on (a,b) and differentiable on (a,b) so f is cost's on $Tc, (c+h) = Tc+h, c$.	
on (a,b) \ick, and $\lim_{x \to c} f(x) = \text{exists.}$ Prove that f is differentiable on c . and $f'(c) = \lim_{x \to c} f'(x)$. Pf : To prove differentiablely, we do it using definiting f is differentiable at c of f is differentiable at c of $\lim_{h \to 0} \frac{f(ch) - f(c)}{h} = \frac{f(ch) - f(c)}{ch - c}$ Nove $\frac{f(ch) - f(c)}{h} = \frac{f(ch) - f(c)}{ch - c}$ Since f is cost's on (a,b) and differentiable on (a,b) so f is cost's on $Tc, (ch) = Tch, c$	
Prove that f is differentiable out c. and $f'(c) = \lim_{m \to c} f'(x)$. Pf : To prove differentiable at c πf f is differentiable at c πf $\lim_{m \to \infty} \frac{f(c)h_1 - f(c)}{h} = \frac{f(c)h_1 - f(c)}{c+h - c}$ Nove $\frac{f(c)h_1 - f(c)}{h} = \frac{f(c)h_1 - f(c)}{c+h - c}$ Since f is cost's on (a,b) and differentiable on (a,b) so f is cost's on $[c, (c+h]]$ on $[c+h, c]$	TOBLE.
ound f'(e) = live f'(x). Pf: To prove differentiability, we do it using definiti f is differentiable at c of fin ficht-f(c) exists Nove ficht-f(c) = f(c,h)-f(c) Nove f(c,h)-f(c) = f(c,h	
Pf: To prime differentiability, we do it using definiti f is clifferentiable at c of fin <u>ficht-fic</u> exists Nove <u>ficht-fic</u> <u>ficht-fic</u> Nove <u>ficht-fic</u> <u>citht-fic</u> Nove <u>ficht-fic</u> <u>citht-c</u> Since f is cost's on (a,b) and differentiable on (a,b) so f is cost's on IC.(cht] on Icth.c]	
f is clifferentiable at c nif <u>fim</u> <u>fichi-fici</u> exists Nore <u>fichi-fici</u> = <u>fichi-fici</u> Nore <u>fichi-fici</u> = <u>fichi-fici</u> Nore <u>fis</u> contis on (a,b) and differentiable on (a,b) so f is contis on IC.(chi] on Icth.c]	
f is clifferentiable at c nif <u>fim</u> <u>fichi-fici</u> exists Nore <u>fichi-fici</u> = <u>fichi-fici</u> Nore <u>fichi-fici</u> = <u>fichi-fici</u> Nore <u>fis</u> contis on (a,b) and differentiable on (a,b) so f is contis on IC.(chi] on Icth.c]	
Nove <u>ficihi-fici</u> exists Nove <u>ficihi-fici</u> <u>ficihi-fici</u> Nove <u>ficihi-fici</u> <u>c+h-c</u> Since f is cost's on (a,b) and differentiable on (a,b) So f is cost's on IC.(c+h] on Ic+h,c]	
Now ficht-fier _ ficht-fier Now fis cost's on (a,b) and differentiable on (a,b) so f is cost's on IC, (+h] on IC+h,c]	
Since f is contis on (a,b) and differentiable on (a,b) so f is contis on IC, (+h] on IC+h, c]	
Since f is contis on (a,b) and differentiable on (a,b) so f is contis on IC, (+h] on IC+h, c]	
so f is contis on IC, (+h] on IC+h, (]	
	1/101
diff on (c, (+h) or (c+h, c)	
So we can apply MUT to f on interval [c, (+h] or	
then <u>f(c+h)-f(c)</u> = f'(Z _h) where Z _h is between c+h-c = f'(Z _h) where Z _h is between	٢
as horo, (+hora, so 2hora	
So $\lim_{h \to 0} \frac{f(t+h) - f(c)}{h} = \lim_{h \to 0} f'(t_h) = \lim_{h \to 0} f'(t_h) e_{t_h}$	
	α
	·
	<u>.</u>

Eq. f differentiable for x > 0 and $f'(x) \rightarrow 0$ as $x \rightarrow +\infty$ ler g(x)= f(x+1) - f(x) Prove qui -> as x->+00 $Pf: g(x) = \frac{f(x+1) - f(x)}{1} = \frac{f(x+1) - f(x)}{x+1 - x}$ Because fis diff for X70, => cont's for X70 for any x>0, fis always contis on [x, 70+1] diff on (x, x+1) Apply MVT $g(x) = f'(\xi_x), \quad \xi_x \in (\Re, x+1)$ let x - + 00, 2, > x, =) 2, - > + 00 So $\lim_{x \to 100} g(x) = \lim_{x \to 100} f'(\xi_x)$ = lim f (2x) = 0 * L'Hopital's Rule: if $\lim_{x \to a} \frac{f(x)}{A(x)}$ is of form $\frac{\theta}{0}$, or $\frac{\infty}{\infty}$ (undetermined) end $\lim_{x \to a} \frac{f'(x)}{q'(x)} = L$ exists, then $\lim_{x \to a} \frac{f(x)}{q'(x)} = L$. Eq: lim Sint lim Sinta = 0 x-20 lim 1-65t = 0 $= \lim_{X \to 0} \frac{(\sin^2 X)'}{(1 - (\cos n)')}$ $= \lim_{X \to 0} \frac{(1 - (\cos n)')}{(1 - (\cos n))'}$ $= \lim_{X \to 0} \frac{2\sin x \log x}{\sin x}$ Use L'Hopital's Rule. = lin 2015x =2

$$F_{X} = (1) \int_{x=0}^{x} \left(\frac{1}{x} - \frac{1}{e_{1}}\right) \int_{x=0}^{x} \left(-f(x) + g(x)\right) f_{x} \int_{x=0}^{x} \left(f(x) + g(x)\right)$$

$$F_{X} = (1) \int_{x=0}^{x} \left(\frac{1}{x} - \frac{1}{e_{1}}\right) = \int_{x=0}^{x} \left(-f(x) + g(x)\right) f_{x} \int_{x=0}^{x} \left(f(x) + g(x)\right) f_{x}$$

$$F_{X} = (1) \int_{x=0}^{x} \left(\frac{1}{x} - \frac{1}{e_{1}}\right) = 0$$

$$F_{Y} = that \quad C_{0} + (x + \dots + C_{0}x^{2} = 0) has a solup botween.$$

$$= 0 \text{ and } 1. \qquad f_{X}^{(n)}$$

$$\left(f(x) = C_{0}x + \frac{C_{1}}{2}x^{2} + \dots + \frac{C_{n}}{n+1}x^{n+1}\right)$$

$$= \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{e_{1}^{x} - 1} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})}$$

$$= \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})}$$

$$= \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})}$$

$$= \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{X} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = \int_{x=0}^{x} \frac{e_{1}^{x} - 1}{x(e_{1}^{x})} = 0$$

$$f_{Y} = \int_{x=0$$