Tutorial notes -1 whizkiddeng@gmail.com
Mean value the:

conditions of Roll the:
(1) f is continuous in $[a, b]$ (closed interval)
(2) f is differentiable in (a, b) (open interval)
(3) $f(a)=f(b)$
all 3 conditions are necessary, like:
(1)

$$
f(x)= \begin{cases}x & 0 \leqslant x<1 \\ 0 & x=1\end{cases}
$$

(2)

(3)

Q1. Assume $\frac{a_{0}}{n+1}+\cdots+a_{n}=0$, try to prove that: $a_{0} x^{n}+\cdots+a_{n}=0$ has at least one root in $(0,1)$

Pf: consider $f(x)=\frac{a_{0}}{n+1} x^{n+1}+\cdots+a_{n} x$
the idea comes from we need the form like $\frac{a_{0}}{n+1}$ to apply our condition.
so $f(0)=0$, and $f(1)=\frac{a_{0}}{n+1}+\cdots+a_{n}=0$ from condition.
so Rolle the satisfied. there is a $\xi \in(0,1)$ s.t $f^{\prime}(\xi)=0$
which is $f^{\prime}(\xi)=a_{0} \xi^{n}+a_{1} 3^{n-1}+\cdots+a_{n}=0$, so ξ is a root.
but we don't know what it is.

Q2. Assume $f(x)$ is continuous in $[0,1]$, differentiable in $(0,1)$,
And $\left|f^{\prime}(x)\right|<1, f(0)=f(1)$, try to show: $\forall x_{1}, x_{2} \in(0,1),\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<1$.
Pf: (1). If $\left|x_{1}-x_{2}\right|<\frac{1}{2}$, consider lagrange the in $\left[x_{1}, x_{2}\right]$ (just assume $x_{1}<x_{2}$)

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=\left|f^{\prime}(\xi)\left(x_{1}-x_{2}\right)\right|=\left|f^{\prime}(\xi)\right| \cdot\left|x_{1}-x_{2}\right|<\frac{1}{2} .
$$

(2). If $\left|x_{1}-x_{2}\right| \geqslant \frac{1}{2}$. consider 3 intervals $\left[0, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, 1\right]$:

$$
\begin{aligned}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| & =\left|f\left(x_{1}\right)-f(0)+f(1)-f\left(x_{2}\right)\right| \quad(f(0)=f(1)) \\
& \leqslant\left|f\left(x_{1}\right)-f(0)\right|+\left|f(1)-f\left(x_{2}\right)\right| \\
& =\left|f^{\prime}\left(\xi_{1}\right)\left(x_{1}-0\right)\right|+\left|f^{\prime}\left(\xi_{2}\right)\left(1-x_{2}\right)\right| \\
& <x_{1}+\mid-x_{2}
\end{aligned}
$$

For $\left|x_{1}-x_{2}\right|=x_{2}-x_{1} \geqslant \frac{1}{2} \Rightarrow 1+x_{1}-x_{2}=1-\left(x_{2}-x_{1}\right) \leqslant \frac{1}{2}$ (assume $x_{1}<x_{2}$) so $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\frac{1}{2}$ in this case. 000 .

Q3. Assume $f(x)$ is continuous in $[a, b]$, differentiable in (a, b),
And: $f(a) \cdot f(b)>0, f(a) \cdot f\left(\frac{a+b}{2}\right)<0$. Try to show:
For any $k \in R$, there exists $\xi \in(a, b)$ s.t $f^{\prime}(\xi)=k f(\xi)$
Pf: From $f(a) \cdot f(h)>0$ we know $f(a), f(b)$ should have the same sign, positive or negative.
so from $f(a) \cdot f\left(\frac{a+b}{2}\right)<0$ means $f(a), f\left(\frac{a+b}{2}\right)$ have different sign.
The graph may like this:

So from the intermediate value the of continuous function. we know there are at least 2 roots of $f(x)$,
one $x_{1} \in\left(a, \frac{a+b}{2}\right)$ and one $x_{2} \in\left(\frac{a+b}{2}, b\right)$
then consider $F(x)=e^{-k x} f(x)$ in $\left[x_{1}, x_{2}\right]$

$$
F\left(x_{1}\right)=e^{-k x_{1}} f\left(x_{1}\right)=0 \quad\left(f\left(x_{1}\right)=0\right) \quad F\left(x_{2}\right)=e^{-k x_{2}} f\left(x_{2}\right)=0 \quad\left(f\left(x_{2}\right)=0\right)
$$

Apply Rolle thm , there exists $\xi \in\left(x_{1}, x_{2}\right) \subset(a, b)$ s.t $F^{\prime}(\xi)=e^{-k \xi}\left(f^{\prime}(\xi)-k f(\xi)\right)=0$
For $e^{-k \xi} \neq 0 . \Rightarrow f^{\prime}(\xi)-k f(\xi)=0 \Rightarrow f^{\prime}(\xi)=k f(\xi)$

Remark: such method is called the auxiliary function, we try to construct a new function $F(x)$ that its derivative $F^{\prime}(x)$ would satisfied the form of conclusion, then apply MVT in $F(x)$.

Q 4. Assume $f(x)$ is twice differentiable in $(-\infty,+\infty)$, and $f(x)$ is bounded.
Try to show: there exists $\xi \in(-\infty,+\infty)$ that $f^{\prime \prime}(\xi)=0$.
Pf: we use the prove by contradiction.
Assume that there doesn't exist any ξ s.t $f^{\prime \prime}(\xi)=0$ which means

$$
f^{\prime \prime}(x)>0 \text { or } f^{\prime \prime}(x)<0 \text { for all } x \in(-\infty,+\infty)
$$

(this is guaranteed by darboux the which said the derivative would have intermediate property)
Now we consider $f^{\prime \prime}(x)>0 \quad x \in(-\infty,+\infty)$
$f^{\prime \prime}(x)>0 \Rightarrow f^{\prime}(x)$ is strictly increasing
take $a^{\text {fixed }}$ point x_{0} which satisfied $f^{\prime}\left(x_{0}\right)>0$, consider $x>x_{0}$. then:

$$
\begin{align*}
& f(x)-f\left(x_{0}\right)=f^{\prime}(\xi)\left(x-x_{0}\right) \quad(\text { Lagrange thm }) \quad \xi \in\left(x_{0}, x\right) \\
&>f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad\left(\xi>x_{0}\right) \\
& \Rightarrow f(x)>f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { (1) } \tag{1}
\end{align*}
$$

For $f^{\prime}\left(x_{0}\right)>0$, so if we let $x \rightarrow+\infty$, the right-side of (1) goes to $+\infty$. so $f(x) \rightarrow+\infty$ which is a contradiction from $f(x)$ is bounded.

If $f^{\prime}\left(x_{0}\right)<0$, just consider $f(x)=f^{\prime}\left(x_{0}\right)+f^{\prime}(\xi)\left(x-x_{0}\right)$ where $x<x_{0}$, so $\}<x_{0}$

$$
<f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \text { let } x \rightarrow-\infty \text {, then } f(x) \rightarrow-\infty \text {. }
$$

similar to get contradiction when $f^{\prime \prime}(x)<0$
so the assumption is wrong, there must exist some ξ s.t $f^{\prime \prime}(\xi)=0$

Kemark: the proof 1 give in the tutorial of Monday is wrong, the mistake is:

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(\xi)\left(x-x_{0}\right) \Rightarrow\left|f^{\prime}(\xi)\right|=\frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|x-x_{0}\right|} \leqslant \frac{2 M}{\left|x-x_{0}\right|}
$$

but this ξ actually should be $\xi=\xi(x)$ related to x, so when $x \rightarrow+\infty$, this ξ also changes, we can't sure that there are some ξ set $f^{\prime}(\xi)=0$. the counter-example is $y=f(x)=\arctan (x)$
$f^{\prime}(x)=\frac{1}{1+x^{2}} \neq 0$, and $f^{\prime \prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$ would equal to 0 when $x=0$.
Q5. Assume $f(x)$ has $n+1$ different roots in $[a, b]$, and $f(x)$ has derivatives till to order n. try to show there is at least one root $\xi \in(a, b)$ s.t $f^{(n)}(\xi)=0$.

Pf:

consider $\left[x_{0}, x_{]}\right]$. for $f\left(x_{0}\right)=f\left(x_{1}\right)=0$. use Roll thm.
we get a $\xi_{1}^{(1)} \in\left[x_{0}, x_{1}\right], f^{\prime}\left(z_{1}^{(l)}\right)=0$.
it's similar to consider $\left[x_{k}, x_{k+1}\right], k=1, \cdots n-1$, so we can get n roots for $f^{\prime}(x)$

$$
\xi_{1}^{(1)}, \xi_{2}^{(1)} \cdots \cdot \xi_{n}^{(1)} \rightarrow f^{\prime}\left(\xi_{i}^{(1)}\right)=0 \quad i=1,2 \cdots n .
$$

repeat such process, the higher order derivative the less roots we have,
so finally when we consider $f^{(n)}(x)$, we can sure that there is
at least one root $\xi \in(a, b), f^{(h)}(\xi)=0$.

Math 1010C Term 12014

Supplementary exercises 3

The following exercises are not to be submitted, but they form an important part of the course, and you're advised to go through them carefully.

In supplementary exercise 2 , we saw how one could find the absolute maximum / minimum of a continuous function on a closed and bounded interval. In the following, we will locate relative maximums / minimums of a function, and find the absolute maximum / minimum of a function on an unbounded interval (if it exists).

1. Find all critical points of the following functions on the indicated intervals. Determine whether these are relative maximums / minimums of the functions (they could be neither).
(a) $f(x)=x^{1 / 3}(x-4), \quad(-1, \infty)$
(b) $g(x)=x \sqrt{8-x^{2}}, \quad(-2 \sqrt{2}, 2 \sqrt{2})$
(c) $h(x)=x \ln x, \quad(0, \infty)$
2. For each of the following function,
(i) Determine where the function is increasing, and where it is decreasing;
(ii) Find all relative maximums / minimums of the function on $(-\infty, \infty)$;
(iii) Determine whether any of these is an absolute extremum of the function on $(-\infty, \infty)$. (For this you will need to understand the behaviour of the function at $\pm \infty$.)
(iv) Determine where the function is convex, and where it is concave;
(v) Sketch the graph of the function.
(a) $f(x)=x^{3}-12 x-5$
(b) $g(x)=x^{2}\left(1-x^{2}\right)$
(c) $h(x)=\frac{x}{x^{2}+1}$
3. For each of the functions and intervals in Question 1, determine whether the given function have an absolute maximum / minimum on the indicated intervals. (You'll have to understand the behaviour of these functions as x approaches the end-points of the intervals.) If yes, find the maximum / minimum values of the functions on the indicated intervals.
4. Determine whether the following functions have an absolute maximum / minimum on the indicated intervals. If yes, locate ALL points where the absolute maximum / minimum are achieved.
(a) $f(x)=e^{2 x}+e^{-x}, \quad[0, \infty)$
(b) $g(x)=\frac{x^{2}-3}{x-2}, \quad(-\infty, 2)$
(c) $h(x)=\frac{2 x^{2}-x^{4}}{x^{4}-2 x^{2}+2}, \quad[-1, \infty)$
(Credit: Many of the above functions are taken from Thomas' calculus, chapter 4.)

Math 1010 C TUTORIAL-7-
PLAN: $\{$ (a). Supplementory exercize 3-
(b) L'tospital's rule;
(c). Q's on HW3;
(a) Supplementayy exeresse 3. (Math 1010 C webpage)

Recalt: Tools:

- Finst derivotive test: f cont. on (a, b) : differentictle on $(a, b) \backslash\{c\}$
(i) $\left\{\begin{array}{l}f^{\prime}(t) \leqslant 0, \\ f^{\prime}(t) \geqslant 0, \\ f(\alpha, c) \\ \end{array},(c, \beta)\right.$,
(ii) $\begin{cases}f^{\prime}(t) \geqslant \theta, & t \in(d, c), \\ f^{\prime}(t) \leqslant 0, & t \in(c, \beta) .\end{cases}$
- Second derivative test: $f:(a, b) \rightarrow \mathbb{R}$ differecocitib, $f^{\prime}(x)=0$ \& f^{\prime} is differentiafle at c;
(i) $f^{\prime \prime}(c)>0 \Rightarrow c$ is loeal min;
(ii) $f^{\prime \prime}(c)<0 \Rightarrow c$ is local max;

Ex1. Find coitical points, \& determine whether relctive

a)

$$
\begin{aligned}
& f(x)=x^{1 / 3}(x-4), \quad x \in(-1, \infty) \\
& f^{\prime}(x)=\frac{1}{3} \cdot x^{-\frac{2}{3}}(x-4)+x^{\frac{1}{3}}=x^{\frac{1}{3}}\left(\frac{x-4}{3 x}+1\right)=\frac{4(x-1)}{3 x^{\frac{2}{3}}}
\end{aligned}
$$

critical pt $\longleftrightarrow f^{\prime}(x)=0 \longleftrightarrow \underline{x=1}$; is the only cortical pt; observation:

- when $\left.\begin{array}{rl}x<1, & x \neq 0, \\ & f^{\prime}(x)<0, \\ x>1, & f^{\prime}(x)>0\end{array}\right\} \Rightarrow x=1$ is local min;

For Ex: On $(-1, \infty)$:
S. f is decreasing on $(-1,1)$, \& $f(0)=0$ does not influence this
. f is increasing on $(1, \infty)$; $(f(-1)=5, f(1)=3)$ is ant. pt $\mathcal{f}^{\prime}(1)=\infty$

$$
(f(1)=-3, f(4)=0, \quad f((1))=+\infty)
$$

$\Rightarrow \cdot x=1$ is absolute min of for $(-1, \infty)$, with min value $f(1)=-3$;

- fodves not have an absolute max. on $(-1, \infty)$. it is continuous on $(-1,+\infty)$, \& $\lim _{t \rightarrow+\infty} f(t)=+\infty$;

Ex．（b）$g(x)=x \sqrt{8-x^{2}}, \quad x \in(-2 \sqrt{2}, 2 \sqrt{2})$ ．
Sol＇n $g^{\prime}(x)=\sqrt{8-x^{2}}+x \cdot \frac{-2 x}{2 \sqrt{8-x^{2}}}=\frac{2\left(4-x^{2}\right)}{\sqrt{8-x^{2}}} ;$
Then $g^{\prime}(x)=0 \Leftrightarrow x= \pm 2 \in(-2 \sqrt{2}, 2 \sqrt{2})$ ．（ritical points；
Now observe that：

$x=$	$-2 \sqrt{2}$	-2	0	2	$2 \sqrt{2}$	
$g^{\prime}(x)$	$-\infty$	-	0	-1	0	$--\infty$
$g(x)$	0	-+8	0	8	0	

Then since near $x=-2,\left\{\begin{array}{l}g^{\prime}(x)<0 \text { for } x \in(-2 \sqrt{2},-2) ; \\ g^{\prime}(x)>0 \text { for } x \in(-2,2) ;\end{array}\right.$
near $x=2,\left\{\begin{array}{l}g^{\prime}(x)>0, \text { for } x \in(-2,2) ; \\ g^{\prime}(x)<0, \text { for } x \in(2,2 \sqrt{2}) ;\end{array} \Rightarrow \frac{x=2 \text { is }}{\text { leal max } ;}\right.$
＊for Ex．
For Ex，First observe $g(x)$ can be extended continuously on $[-2 \sqrt{2}, 2 \sqrt{2}]$ with $g(-2 \sqrt{2})=g(2 \sqrt{2})=0 ; \cdots, \cdots$ can do what we do
\＆then according $g^{\prime}(x)$＇s Repaviour in Ex 2！

Compare $g(-2 \sqrt{2})=0, g(-2)=-\sqrt{4}, g(2)=8^{4}, g(2 \sqrt{2})=0$ ； absolute max absolute max

Conclusion: $g(x)$ can achieve absolute max. \& absolute min. -4 on $(-2 \sqrt{2}, 2 \sqrt{2})$, at $x=-2$ (abs .min.), w/ $f(-2)=-\lambda$ ats. min value;
at $x=2$ (ats. max), w/ $g(2)=44^{4}$
 ats. max value.
(c). $h(x)=x \ln x, \quad x \in(0+\infty)$

$$
h^{\prime}(x)=\ln x+x \cdot \frac{1}{x}=\ln x+1
$$

$8 h(x)$ dies not have absolve max:

Then $h^{\prime}(x)=0 \Leftrightarrow x=e^{-1}=\frac{1}{e} \approx 0.36788$.
$8 \quad h^{\prime}(x)<0 \Leftrightarrow x \in\left(0, \frac{1}{e}\right)$
$h^{\prime}(x)>0 \Leftrightarrow x \in\left(\frac{1}{e},+\infty\right) ;$
$\Rightarrow x=\frac{1}{e}$ is led min; $\quad * E x, 1$
For Ex, ofsowe that

$\Rightarrow x=\frac{1}{e}$ is asseluse mix with $h\left(\frac{1}{e}\right)=-\frac{1}{e}$;
$E \times 2:\left\{\right.$ (a) $f(x)=x^{3}-12 x-5$;
whore decreasing, increasing:
(b) $g(x)=x^{2}\left(1-x^{2}\right)$;
where consex, coneave;
(c) $h(x)=\frac{x}{x^{2}+1}$; rebatice extreme, \& whether afsolucte or not.

Sol'n: (a) $f(x)=x^{3}-12 x-5$;

$$
f^{\prime}(x)=3 x^{2}-12 x=3(x-2)(x+2)
$$

$$
f^{\prime \prime}(x)=6 x ;
$$

$$
\begin{aligned}
& h(x)=\frac{x}{x^{2}+1} ; \\
& h^{\prime}(x)=\frac{x^{2}+1-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}=\frac{(1-x)(1+x)}{\left(x^{2}+1\right)^{2}} ; \\
& h^{\prime \prime}(x)=\frac{1}{\left(x^{2}+1\right)^{3}}-2 \cdot x(x-2)(x+2) ;
\end{aligned}
$$

 globs inm.
B) \mathcal{L}^{\prime} Leopital Rule

The 3.7 (P50, text bout) If fo satisfies

$$
\left\{\begin{array}{l}
\cdot f(c)=g(c)=0 ; \\
\cdot f, g \text { are forth differentiable on }(a, b) \text {; (except perhaps atc) } \\
\cdot g^{\prime}(x) \neq 0, \text { on }(a, b), \forall x \neq c ; \\
\cdot \lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)} \exists, \&=\alpha(\text { finite number }) ;
\end{array}\right.
$$

Then $\quad \lim _{x \rightarrow 1} \frac{f(x)}{g(x)} \exists \&=\alpha$;
Remark: Moe general forms:
$\left\{\right.$ (1) $f(x)=g(c)=0 \stackrel{\text { rupture }}{\sim} \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)= \pm \infty$;
(2) $c \in(a, b) \stackrel{\text { nephews }}{\sim} c= \pm \infty$;

POINT: (i) L'tipural rale are most useful tool when dealing with evaluating limits involving inderminate forms.
ie. \exists forms: $\frac{0}{0} ; \frac{\infty}{\infty} ; 0 . \infty ; \infty-\infty$;

\& Have to check it is of one of a tore form before using L'blofital rule. (othercise, clergy $\lim _{x \rightarrow 0} \frac{\sin x}{\cos x} \neq \lim _{x \rightarrow 0} \frac{+\cos x}{-\sin x}$)
(ii) Sometimes L'thopital rule dives not work, but it dies not mean that the limit does not exist. Eg $\lim _{x \rightarrow \pm \infty} \frac{x+\sin x}{x+\cos x}=1$, but L'Hopital rule can not work here; (ie in is sufficient, fut) $x \rightarrow \pm \infty$
(iii) You can use L'Aspital rule to verify the following useful equivalence relations easily, es
$x \rightarrow 0, \quad x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$
\sim \ln (1+x) \sim \frac{a^{x}-1}{\ln a} \sim \frac{(1+x)^{\mu}-1}{\mu} ; \underset{\substack{ \\\mu \neq 0}}{(a>0)}
$$

\& $\frac{1}{2} x^{2} \sim(1-\cos x)$; etc;
Example: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\operatorname{since} \frac{0}{0}, x \neq 0 \operatorname{cosen} x \neq 0, \lim _{x \rightarrow 0} \frac{\cos x}{1}=1$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} \frac{\sin x}{x} \exists \& \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 ; \\
& \lim _{x \rightarrow 0} \frac{\ln (1+x)}{e^{x}-1} ; \sin e \frac{0}{0}, \& x \neq 0, e^{x}-1 \neq 0, \& \\
& \lim _{x \rightarrow 0} \frac{\ln (1+x)^{\prime}}{\left(e^{x}-1\right)}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{e^{x}}=\lim _{x \rightarrow 0} \frac{1}{(1+x) e^{x}}=1 \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\ln (1+x)}{e^{x}-1}=1 ;
\end{aligned}
$$

etc;
Examples (a) $\lim _{x \rightarrow 0}\left(\frac{1}{\ln (1+x)}-\frac{1}{x}\right) ;$
(b) $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$;
(c). $\lim _{x \rightarrow+\infty} \sqrt[x]{x}\left(=\lim _{x \rightarrow+\infty} x^{\frac{1}{x}}\right) ;$

Soln: (a) $\lim _{x \rightarrow 0}\left(\frac{1}{\ln (1+x)}-\frac{1}{x}\right)=\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x \ln (1+x)} \quad\left(\frac{0}{0}\right.$
L'Hepptal

TRY
L'Higntal

$$
\lim _{x \rightarrow 0} \frac{(x-\ln (1+x))^{\prime}}{(x \ln (1+x))^{\prime}}=\lim _{x \rightarrow 0} \frac{1-\frac{1}{1+x}}{\ln (1+x)-\frac{x}{1+x}}=\lim _{x \rightarrow 0} \frac{x}{(1+x) \ln }
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{(x)^{\prime}}{[(1+x) \ln (1+x)+x]^{\prime}}=\lim _{x \rightarrow 0} \frac{1}{\ln (1+x)+2}=\frac{1}{2} \tag{0}
\end{equation*}
$$

(b) $\lim _{x \rightarrow 0}(\underbrace{\left.\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}}_{f(x)}$ TRT $\lim _{x \rightarrow 0} \ln f(x)=L$, then $\lim _{x \rightarrow 0} f(x)=e^{L}$;

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1}{1-\cos x} \ln \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\ln \frac{\sin x}{x}}{\frac{x^{2}}{2}}=\lim _{x \rightarrow 0} \frac{\left(\operatorname{lon} \frac{\sin x}{x}\right)^{\prime}}{\left(\frac{x^{2}}{2}\right)^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{2} \sin x}=\lim _{x \rightarrow 0} \frac{(x \cos x-\sin x)^{\prime}}{\left(x^{3}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{-x \sin x}{3 x^{2}} \\
& =-\frac{1}{3}, \quad \text { Heme } \quad \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}=e^{-\frac{1}{3}}
\end{aligned}
$$

(c) $\lim _{x \rightarrow+\infty}(x)^{\frac{1}{x}}$, still try

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \ln \sqrt[x]{x}=\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x}}{1}=0 \\
& \Rightarrow \lim _{x \rightarrow+\infty} \sqrt[x]{x}=1
\end{aligned}
$$

Tutorial 7
Topics: Rule's, Lagrange's and Cauchy's mean value theorem.
Q1: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable if $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)$
Show that $\exists c \in \mathbb{R}$ sit $f^{\prime}(c)=0$
Q2: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous if $f^{(k)}(x)$ exists $\forall x \in(a, b), \forall k=1,2, \cdots, n$ and $f\left(a_{i}\right)=0 \quad \forall i=0,1, \ldots, n$ where $a_{0}<a_{1}<\ldots<a_{n}$ Show that $\exists c_{6}(a, b)$ sit $f^{(n)}(c)=0$.

Q3: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous
if f is differentiable on (a, b) and $f^{\prime}(x)=0 \quad \forall x \in(a, b)$ show that f is a constant function on $[a, b]$.

Q4: Suppose $f:(a, b) \rightarrow \mathbb{R}$ is continuous if f is differentiable at $(a, b) \backslash\{, c\}$ and $\lim _{x \rightarrow c} f^{\prime}(x)$ exists. show that f is differentiable at $x=c$.

Recall:
Suppose $f . g:[a, b] \rightarrow \mathbb{R}$ is continuous and f, g are differentiable on (a, b)

Rule's MVT: If $f(a)=f(b)$ then $\exists c \in(a, b)$ s.t. $f^{\prime}(c)=0$.
Lagrange's MUT: There exist $c \in(a, b)$ sit. $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Cauchy's MUT: There exist $c \in(a, b)$ s.t. $[f(b)-f(a)] g^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)$ equivalently if $g^{\prime}(c) \neq 0, g(b)-g(a) \neq 0$
then $\quad \frac{f^{\prime}(c)}{g(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

Geometrically

Rolle's

Lagrange's

Canchys

Soln
Q1) Consider $x=0$, we have $f(0)=\lim _{x \rightarrow \pm \infty} f(x)$ or $f(0) \neq \lim _{x \rightarrow \pm \infty} f(x)$
Case (1) : $f(0) \neq \lim _{x \rightarrow \pm \infty} f(x)$
choose y_{0} between $f(0), \lim _{x \rightarrow \pm \infty} f(x)$
i.e. $\min \left\{f(0), \lim _{x \rightarrow \pm \infty} f(x)\right\}<y_{0}<\max \left\{f(0), \lim _{x \rightarrow \pm \infty} f(x)\right\}$
since f is continnous on \mathbb{R}
$\exists a \in(-\infty, 0)$ and $b \in(0, \infty)$
s.t. $f(a)=f(b)=\lim _{x \rightarrow \pm \infty} f(x)$

By Rolle's thm $\exists c \in(a, b)$ sit. $f^{\prime}(c)=0$

Case (2) if $f(0)=\lim _{x \rightarrow \pm \infty} f(x)$
Consider $x=1$
if $f(1) \neq \lim _{x \rightarrow \pm \infty} f(x)$ then repeat argument of Case (1).
if $f(1)=\lim _{x \rightarrow \pm \infty} f(x)=f(0)$ then by Rolle's the $\exists c \in(0,1)$ sit. $f^{\prime}(c)=0$

Q2) Since $f\left(a_{0}\right)=f\left(a_{1}\right)=\cdots=f\left(a_{n}\right)=0$
for $a_{0}<a_{1}<\cdots<a_{n}$
By Rule's MUT $\exists b_{i} \in\left(a_{i}, a_{i+1}\right), i=0,1, \cdots, n-1$
s.t. $f^{\prime}\left(b_{0}\right)=f^{\prime}\left(b_{1}\right)=\ldots=f^{\prime}\left(b_{n-1}\right)=0$
where $b_{0}<b_{1}<\cdots<b_{n-1}$
Assume that for $k=0,1, \ldots, n-1$ sit.

$$
f^{(k)}\left(x_{0}\right)=\cdots=f^{(k)}\left(x_{n-k}\right)=0
$$

By Rule's tho $\exists \quad y_{i} \in\left(x_{i}, x_{i+1}\right) \quad i=0, \cdots, n-k-1$

$$
\text { sit. } f^{(k+1)}\left(y_{i}\right)=f^{(k)^{\prime}}\left(y_{i}\right)=0
$$

Inductively, we have $f^{(n)}\left(y_{i}\right)=0, i=0 \Rightarrow f^{(n)}(c)=0 \quad$ for $\quad c=y_{0}$.

Q3) By Lagrange's MUT,

$$
\begin{aligned}
& \text { let } x \in(a, b), \quad \frac{f(b)-f(x)}{b-x}=f^{\prime}(c) \quad \exists c \in(x, b) \\
& \Rightarrow \quad 0=f^{\prime}(c)=\frac{f(b)-f(x)}{b-x} \Rightarrow f(b)-f(x)=0 \\
& \Rightarrow f(x)=f(b) \quad \forall x \in(a, b)
\end{aligned}
$$

Hence f is constant on $(a, b]$. [need $f(a)=f(b)]$
By Rolle's thm, $\exists c \in(a, b)$ s.t. $0=f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\Rightarrow f(b)=f(a)
$$

Hence $f(x)=f(b)=f(a)$ on $x \in[a, b]$,

Qu)

$$
\begin{aligned}
\frac{f(c+h)-f(c)}{h} & =\frac{f(x)-f(c)}{x-c} \quad(\text { by } \operatorname{sub} x=c+h) \\
& =f^{\prime}\left(t_{x}\right) \quad \text { where } x \neq c \text { and } \\
& \min \{x, c\}<t_{x}<\max \{x, c\}
\end{aligned}
$$

As $h \rightarrow 0$, we have $x \rightarrow c$; thus $\lim _{x \rightarrow c} t_{x}=c$
Hence

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{x \rightarrow c} f^{\prime}\left(t_{x}\right)=\lim _{t \rightarrow c} f^{\prime}(t) \text { exists }
$$

Hence f is differentiable at $x=c$
and $\quad f^{\prime}(c)=\lim _{t \rightarrow c} f^{\prime}(t)$

Tutorial $7 . j \min @ m$ math. Cuhk. ed

* Sketch graph of a function.

Second derivative ~ convex, concave.

Convex :

$$
\begin{gathered}
f\left(\frac{x+y}{2}\right)<\frac{1}{2} f(x)+\frac{1}{2} f(y) \\
\uparrow
\end{gathered}
$$

$$
f^{\prime \prime}(x)>0
$$

concave:

$$
\begin{gathered}
f\left(\frac{x+y}{2}\right)>\frac{1}{2} f(x)+\frac{1}{2}+(y) \\
\uparrow
\end{gathered}
$$

$$
f^{\prime \prime}(x)<0
$$

Eg. graph of $y=x^{2}$.

Cannot distinguish these by above information \Downarrow

Need second derivative, $\quad y^{\prime \prime}=2>0$ So the function is always convex

* Mean Value The :

Condition: Remember to check this condition when you want to apply MVT. !!!

* $f(x)$ is cont's on $[a, b]$ and differentiable on (a, b)

MVT is used to do proofs:

Eg. $a<c<b$. $\quad f:(a, b) \rightarrow \mathbb{R}$ is cont's. f is differentiable. on $(a, b) \backslash\{c\}$. and $\lim _{x \rightarrow c} f^{\prime}(x)$ exists.
Pore that f is differentiable at c.
and $f^{\prime \prime}(x)=\lim _{x \rightarrow c} f^{\prime}(x)$.
Pf: To pore differentiability, we $d s$ it using definition f is differentiable at c if

$$
\lim _{h \rightarrow 0} \frac{f(c t h 1-f(c)}{h} \text { exists }
$$

Not $\frac{\left.f(c h)-f_{1}\right)}{h}=\frac{f(c h)-f(c)}{c+h-c}$
Since f is ind's on (a, b) and diffenatiable on $(a, b) \backslash(c)$ so f is counts on $[c, c+h]$ or $[c+h, c]$
deft on (c, eth) or (chic)
S. we can apply Mri to for interval $[C, c+h]$ or $[l+h, c]$ then $\frac{f(c+h-f(c)}{c+h-c}=f^{\prime}\left(\varepsilon_{h}\right) \quad$ where ε_{h} is between c and $c+h$
as $h \rightarrow 0, \quad c+h \rightarrow c$, so $\xi_{h} \rightarrow c$
so $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0} f^{\prime}\left(\xi_{h}\right)=\lim _{z_{h} \rightarrow c} f^{\prime}\left(\xi_{h}\right)$ exists

Eg. f differentiable for $x>0$. and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$
let $g(x)=f(x+1)-f(x)$
Prove $g(x) \rightarrow 0$ as $x \rightarrow+\infty$
If: $\quad g(x)=\frac{f(x+1)-f(x)}{1}=\frac{f(x+1)-f(x)}{x+1-x}$
Because f is diff for $x>0$, \Rightarrow wants for $x>0$ for any $x>0, \quad f$ is always cont's on $[x, x+1]$
diff on $(x, x+1)$
Apply $\operatorname{lv} V T \quad g(x)=f^{\prime}\left(\xi_{x}\right), \xi_{x} \in(x, x+1)$
let $x \rightarrow+\infty, \quad \xi_{x}>x, \Rightarrow \xi_{x} \rightarrow+\infty$
s. $\quad \lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} f^{\prime}\left(\xi_{x}\right)$

$$
=\lim _{\xi_{x \rightarrow+\infty}} f^{\prime}\left(\xi_{x}\right)=0
$$

* L'Hoptad's Rule:
if $\lim _{x \rightarrow \infty} \frac{\left.f_{x}\right)}{g(x)}$ is of form \div or $\frac{\infty}{\infty}$ (undeterminual) and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ exists, then $\lim _{x \rightarrow u} \frac{f(x)}{g(x)}=L$.

Eg:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{1-\cos x} \\
= & \lim _{x \rightarrow 0} \frac{\left(\sin ^{2} x\right)^{\prime}}{(1-\cos x)^{\prime}} \\
= & \lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{\sin x} \\
= & \lim _{x \rightarrow 0} 2 \cos x=2
\end{aligned}
$$

Ex. (1) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right) \quad\left[\lim _{x \rightarrow a}(f(x)+g(x)) \not \lim _{x \rightarrow a}\left(f^{\prime}(x)+g^{\prime}(x)\right)\right.$
(2) $C_{0}, C_{1}, \cdots C_{n}$ are real numbers satisfy

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n}}{n+1}=0
$$

Prove that $\frac{c_{0}+c_{1} x+\cdots+c_{n} x^{n}}{f^{\prime \prime}(x)}=0$ has a olin between.
0 and 1.
(Hint: consider $\left.f(x)=C_{0} x+\frac{C_{1}}{2} x^{2}+\cdots+\frac{C_{n}}{n+1} x^{n+1}\right)$
Sol (1) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)=\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x\left(e^{x}-1\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{x}-1+x e^{x}} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{2 e^{x}+x e^{x}}=\frac{1}{2}
\end{aligned}
$$

(2) Consider $f(x)=c_{0} x+c_{1} \frac{x^{2}}{2}+\cdots \frac{c_{n}}{n+1} x^{n+1}$
note $f(0)=0, \quad f(1)=C_{0}+\frac{c_{1}}{2}+\cdots+\frac{c_{n}}{n+1}=0$

$$
f^{\prime}(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}
$$

sine f is cont's on $[0,1]$ and diff on $(0,1)$ apply MVT we have

$$
0=\frac{f(1)-f(0)}{1-0}=f^{\prime}(\xi) \quad \text { for some } \xi \in(0,1)
$$

i.e. ξ is a olin to $c_{0}+c_{1} x+\cdots+c_{n} x^{n}=0$

